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A hybrid neural network model for PEM fuel cells
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Abstract

The goal of this paper is to discuss a neural network modeling approach for developing a quantitatively good model for proton exchange
membrane (PEM) fuel cells. Various ANN approaches have been tested; the back-propagation feed-forward networks and radial basis function
networks show satisfactory performance with regard to cell voltage prediction. The effects of Pt loading on the performance of the PEM fuel
cell have been specifically studied. The results show that the ANN model is capable of simulating these effects for which there are currently
no valid fundamental models available from the open literature.
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Two novel hybrid neural network models (multiplicative and additive), each consisting of an ANN component and a physical co
ave been developed and compared with the full-blown ANN model. The results from the hybrid models demonstrate comparable p
in terms of cell voltage predictions) compared to the ANN model. Additionally, the hybrid models show performance gains over the
odel alone. The additive hybrid model shows better accuracy than that of the multiplicative hybrid model in our tests.
2004 Elsevier B.V. All rights reserved.
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. Introduction

A fuel cell is a device that can directly convert chemical
nergy to electric and thermal energy. Among various types
f fuel cells, proton exchange membrane (PEM) fuel cells
also called polymer electrolyte membrane fuel cells) have
ttracted a significant amount of research interest in the past
ecade, especially in stationary and mobile power generators
nd electric vehicles. There are primarily two types of PEM

uel cells, namely the hydrogen PEM fuel cell and the direct
ethanol fuel cell (DMFC), both of which are efficient and

lean replacements for conventional electricity generators.
Mathematical models are important tools for the design

nd optimization of fuel cells. In addition to the advances
n PEM fuel cell design, many physical models have been
eveloped to examine the complicated transport and electro-
hemical phenomena in hydrogen-feed PEM fuel cells[1–9]
nd DMFCs[10–15]. Unfortunately, several of these physi-
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cal models are not accurate enough. Besides, physical m
may not be available to describe input–output relations o
terest, e.g., the effect of Pt loading, humidity, and other de
or operating parameters on fuel cell performance.

A well-designed artificial neural network (ANN) mod
provides useful and reasonably accurate input–outpu
lations because of its excellent multi-dimensional m
ping capability. Artificial neural networks are computatio
paradigms made up of massively interconnected ada
processing units, known asneurons. They have been exte
sively employed in various areas of science and techno
such as pattern recognition, signal processing and pr
control in engineering[16].

In this paper, we will examine the application of AN
approaches to the modeling of PEM fuel cells. Brief in
ductions to ANN, BP feed-forward, the RBF network a
the formulation of the hybrid model will be given first. Ne
construction of ANN and hybrid models will be describ
The hybrid models employ an analytical model suitably m
ified to address the temperature effect. Finally, the result
conclusions will be discussed.
378-7753/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2004.08.047
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Nomenclature

a slope parameter of sigmoid function
b bias for a layer of ANN
Di diffusion coefficient of speciesi (cm2 s−1)
Dref
i reference diffusion coefficient of speciesi

(cm2 s−1)
E error function
F Faraday’s constant (96 488 C eq−1)
h radial basis function
i0 exchange current density (A cm−3)
iref
0 reference exchange current density (A cm−3)
n number of electrons transferred in the reaction
p bias of hidden neurons
P pressure
q square of distance
R universal gas constant (8.3143 J mol−1 K−1)
t target for supervised training
�tj selected centers for RBF network
T temperature (K)
Tref reference temperature (K)
wj weight of link j
x input signal
�x input vector
xj input from link j
y output of a neuron
yk output of thekth neuron
Y output of hybrid neural model
Yadditive additive hybrid model
Yanalytical analytical model
YANN artificial neural network model
Ymultiplicative multiplicative hybrid model
zi output signal from theith hidden layer to the

kth neuron

Greek symbols
α momentum term for Back-propagation training
η learning rate
ηoc open-circuit voltage (V)
ηref

oc reference open-circuit voltage (V)
ϕ activation function
σ proton conductivity (�−1 cm−1)
σref reference proton conductivity (�−1 cm−1)

2. Method formulation

2.1. Overview of ANN

ANN is a powerful data modeling tool that can be used to
capture complex input/output relationships. There are many
kinds of ANN models that have been developed for vari-
ous applications. Based on the topology, the connection in
an ANN can be feed-forward or feedback (recurrent). Un-

like feedback networks, feed-forward networks do not con-
tain any cycle in the connections between any two units. The
learning of ANN can be supervised (learning with a teacher)
or unsupervised (learning without a teacher)[17]. For super-
vised training, every input vector is associated with a target
output vector that supervises the training process. For unsu-
pervised training, the ANN model is not trained toward any
specific target outputs; instead the ANN learns to recognize
patterns in the input data.

The ANN has some significant features[17] including:

(1) nonlinearity,
(2) adaptivity,
(3) high parallelism,
(4) fault tolerance,
(5) uniformity of analysis and design and
(6) ability to tackle imprecise and fuzzy information.

These features make ANN a good tool for information
processing.

In our study of ANN modeling for PEM fuel cells, we
will focus on feed-forward neural networks with supervised
training. A schematic diagram of a feed-forward artificial
neural network is shown inFig. 1. This network consists of
an input layer, a hidden layer and an output layer. The output
from a neuron in the hidden or output layer can be described
b

y
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b tput
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y the following equation:

= ϕ


 N∑
j=1

wjxj + b


 (1)

here the input signalxj is multiplied by a weight. The bia
is then added to the weighted sum, and finally the ou

ignal of the neuron is obtained by applying an activa
unctionϕ(v) to the result. The most widely used activat
unction is the sigmoid function, a common form of which
efined by

(y) = 1

1 + e−ay (2)

herea is the slope parameter. Given a network with
idden layer, the input signalxj for the neuron in the hidde

ayer comes directly from the value of input variablej. How-
ver, for a neuron in the output layer, the input signalxj is the
utput from thejth neuron in the hidden layer. Considerin

eed-forward network as shown inFig. 1, the model equatio
or the entire neural network can be expressed as follow

k = ϕ

(
K∑
i=1

wo
kizi + b2

)

= ϕ


 K∑
i=1

wo
kiϕ


 N∑
j=1

wh
ijxj + b1


+ b2


 (3)

herezi is the output signal from theith hidden neuron an
k the output signal from thekth output neuron. The ANN i
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Fig. 1. The feed-forward multi-layer neural network with a single hidden layer.

Fig. 1only contains one hidden layer. However, it is possible
to have more than one hidden layer, as determined by the
complexity of the problem. In our case studies, ANN models
with one hidden layer were adequate for accurate prediction
of output variables. The number of neurons in the input and
output layers are related to the number of independent and
dependent variables, respectively. The number of neurons in
the hidden layer is related to the complexity of the problem.
It is often obtained by trial and error during training.

2.2. Back-propagation feed-forward network

The back-propagation algorithm for training of ANNs was
popularized by Rumelhart et al. in 1986[18]. The learning
(training) process adjusts the unknown network parameters
(weights, bias, etc.) in order to minimize the least mean square
error function defined as follows:

E(w) = 1

2

N∑
j=1

M∑
k=1

(tjk − y
j
k)

2
(4)

wherek refers to an output neuron,j is an index over the
learning data,yjk the output of the network andtjk the corre-
sponding target value. The weight adjustments are conducted
by back-propagating the errors to the network. To accomplish
t the
g ws:

�

w
l s
b ntum
t eter
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�

2.3. Radial basis function network

A radial basis function (RBF) network is a feed-forward
network with a hidden layer that employs a nonlinear transfor-
mation from the input space to the hidden space. The hidden
units implement a set of radial basis functions that constitute
an arbitrary basis for the input vectors. Due to their excellent
function approximation capabilities[19], RBF networks are
often used for complex mapping. The model equation for an
RBF network can be expressed as follows:

yk(�x) = ϕ


 K∑
j=1

wo
kih(|�x−�tj|, pj) + bk


 (7)

The structure of an RBF network is shown inFig. 2. The
hidden layer in RBF network is represented by a radial basis
functionh(|�x−�tj|, pj), where�tj is the center that has to be
selected a priori andpj the bias for a given hidden neuron.
The Gaussian function, as shown in Eq.(8), is widely used
as the basis function for RBF networks:

h(q, pj) = e−pjq (8)

whereq = |�x−�tj|2.
Unlike a BP network that can have one or more hidden lay-

ers, an RBF network has only one hidden layer. Thedelta rule,
w ard
n orks
d

2

of a
P ited
a con-
s ent.
T rt of
t em,
his, the weight is adjusted by an amount proportional to
radient of error with respect to the weight, shown as follo

w = −η∂E(w)

∂w
(5)

hereη is the learning-rate parameter and∂E(w)/∂w the
ocal gradient ofE(w) in Eq.(4). The BP algorithm perform
etter with a second-order term referred to as the mome

ermα, which introduces the old weight change as a param
or the computation of the new weight change.

wi+1 = −η∂E(w)

∂w
+ α�wi (6)
hich is commonly used in back-propagation feed-forw
etworks, is also used to update the weights of RBF netw
uring training.

.4. Hybrid model development

In order to more accurately predict the performance
EM fuel cell in the case when physical models of lim
ccuracy are available, we propose a hybrid model that
ists of an analytical component and an ANN compon
he rationale behind this approach is to combine the pa

he model that is well known from the physics of the probl
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Fig. 2. Radial basis function network.

with the part that is poorly known but can be estimated quite
effectively using neural networks.

The schematic of a multiplicative hybrid model is
shown in Fig. 3. The cell voltage or other desired
outputs can be described by a multiplicative model
Ymultiplicative(x1, x2, . . . , xN ), which has an analytical com-
ponent and an ANN component as follows:

Y = Ymultiplicative(x1, x2, . . . , xN )

= Yanalytical(x1, x2, . . . , xN )YANN(x1, x2, . . . , xN ) (9)

The vector�x = [x1, x2, . . . , xN ] represents operating or de-
sign variables. The functionYanalytical(x1, x2, . . . , xN ) is an
analytical (physical) model that takes as input�x. The function
YANN(x1, x2, . . . , xN ) is an artificial neural network model
that takes as input�x and approximates the unmodeled parts
in the physical model. Finally, the net predictionY is the
product of the predictions fromYanalytical(x1, x2, . . . , xN ) and
YANN(x1, x2, . . . , xN ). Similarly, an additive model can be
constructed as

Y = Yadditive(x1, x2, . . .)

= Yanalytical(x1, x2, . . .) + YANN(x1, x2, . . .) (10)

The analytical model used in the hybrid model is a one-
dimensional model based on the model developed by Ku-
likovsky [14]. This original model was validated against the
experimental data of a DMFC at a fixed operating temperature
of 363 K. Using the method described in[10], we extended
the capability of the original model to predict cell voltages
under different operating temperatures. This is accomplished
by approximating the temperature dependence of the material
properties as summarized below.

2.5. Proton conductivity

σ = σref exp

[
1268

(
1

Tref
− 1

T

)]
(11)

This relationship[5] was used to correct the proton conduc-
tivity of Nafion for different temperatures, and was assumed
valid for anode and cathode catalyst layers as well as the
membrane.

2.6. Diffusion coefficients

The diffusion coefficients for the species in anode, cath-
ode and MEA are assumed to have similar temperature de-
p

D

2

i

Fig. 3. The schematic of multiplicative hybrid model.
endence as the following[3]:

i = Dref
i exp

[
2436

(
1

Tref
− 1

T

)]
(12)

.7. Dependence of i0 on temperature

Anode:

0,an = iref
0,anexp

[
8420

(
1

Tref
− 1

T

)]
(13)
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Cathode[20]:

i0,cat = iref
0,catexp

[
8804

(
1

Tref
− 1

T

)]
(14)

2.8. Open-circuit voltage

Open-circuit voltage was corrected for the thermodynamic
effects of temperature and pressure by the following relation-
ship:

ηoc = ηref
oc +�T

(
∂E

∂T

)
−�N

RT

nF
ln

(
P2

P1

)
(15)

where (∂E/∂T ) is the gradient of electric potential over tem-
perature. Liquid methanol solution was used as the anode feed
in this study. For this system (∂E/∂T ) = −0.14 mV K−1 and
�N = −0.5. All the reference parameters (at a reference
temperature of 363 K) can be obtained from[14].

3. Development of ANN models and hybrid models

3.1. Preparation of data sets
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Each data set was separated into three parts, namely train-
ing data, test data and validation data. The training data was
used to train the neural network to obtain the weights for the
network. The test data were used to determine when train-
ing should be stopped. Finally, the validation data were em-
ployed to assess the performance of a trained neural network.
Initially, the validation data are chosen depending on the de-
sired number and form of outputs. The remaining data are
separated into training and test data at a ratio of 3:1.

3.2. Constructing ANN

For BP feed-forward networks, a three-layer network
(with one hidden layer) was found to be adequate for train-
ing. The architecture of the RBF network was the same as that
of the three-layer feed-forward network. Generally speaking,
input and output variables can be any process variables that
are measurable (such as cell voltage, cell current density, cell
temperature, relative humidity of air, etc.) during the opera-
tion of a fuel cell system. In our studies, input variables in-
cluded cell temperature, concentration of methanol solution,
methanol flow rate, current density, Pt loading and the ratio
of the amount of Pt to carbon. The output variable chosen
was the cell voltage.

The procedure to create a multiplicative hybrid model is
i ain
t r,
t vec-
t g
t put
v ta for
t ith
t les,
c fore,
t
i odel
w addi-
t The
fi ying
o d
f

Three data sets were assembled from experimenta
n the open literature[21–23]. In addition, experimental da
rom the Connecticut Global Fuel Cell Center was use
est the ANN models. The cell performance data by A
opoulos et al.[21] was obtained from a liquid-feed dire
ethanol fuel cell that was operated with methanol solu

upplied at a rate of 1.12 cm3 min−1 with air fed cathode
ressurized at 2 bar. The concentrations of methanol

ion vary from 0.25 to 0.75 M. Cell operating temperatu
ary from 303 to 363 K. Cell performance data by Gurau
motkin [22] is for a DMFC operated at temperatures

ween 313 and 353 K. Different concentrations of meth
olution (0.5, 1 and 2 M) and different MeOH solution fl
ates (0.15, 0.5 and 5 ml min−1) were used for each of the
ests.

Data from Qi and Kaufman[23] were used to show th
bility of the ANN model to simulate the effect of Pt load
n cell performance. Pt loading (mg cm−2) is defined as th
mount of Pt catalyst per area of the MEA. The tests w
onducted on a hydrogen-feed PEM fuel cell under the
emperature of 308 K. The hydrogen humidification tem
ture and air humidification temperature were 318 K.
toichiometries of air and hydrogen were approximatel
t a current density of 2.0 A cm−2. Two experimental da
ets from CGFCC were used to train and test ANN m
ls. The first data set is the performance data for a liq

eed DMFC operated at four different temperatures (
18, 333 and 348 K). The second data set examine
ffects of operating temperature (313–353 K) and pres
0.54–2.5 atm) on cell performance of a hydrogen-feed P
uel cell.
llustrated inFig. 4. From experimental data, we can obt
he input vector�x and output vectorY. From the input vecto
he analytical model can generate the simulated output
orYanalytical. The ratioY/Yanalyticalwas obtained by dividin
he output by the simulated cell voltages. Finally, the in
ector and the ratio vector were used as the training da
he ANN model. The trained ANN model was combined w
he analytical model to give predictions of output variab
orresponding to a given set of input variables. There
he ratioY/Yanalyticalor the differenceY−Yanalyticalof exper-
mental cell voltages to those simulated by analytical m
ere used as target outputs for the hybrid model. The

ive hybrid model can be similarly constructed as above.
nal results were expressed as cell voltages by multipl
r adding the analytical partYanalytical to the output obtaine

rom the ANN model.

Fig. 4. Constructing the multiplicative hybrid model.
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Fig. 5. Comparison of simulated cell voltages and experimental data for a PEM fuel cell.

The number of hidden neurons in the hidden layer can
vary, and will affect the quality of the ANN. Therefore, an
optimal number of hidden neurons need to be determined for
each neural network to achieve the best performance. This
was done by trial and error.

3.3. Training, testing and validating ANN

Training of an ANN model is the process of adjusting
the weights of links among the neurons. The weights are
updated after processing each example (incremental training)
or after processing the whole training data set (batch training).
During training, the error function is reduced as the number of
training epoch increases. Testing data set is used to determine
when to stop training process by monitoring the error of the
test data. The error from the test data is usually less than
that from the training data. If the two error quantities become
equal, we need to stop the training to make sure the network is
not over-trained. Once the ANN is trained, the model is ready
to give predictions of output variables. The simulated outputs

are then compared to the experimental ones in the validated
data set to assess the performance of the ANN model.

4. Results and discussion

Fig. 5 shows the comparison of simulated cell voltages
from ANN model to experimental results. We employed the
data set from a hydrogen-feed PEM fuel cell at CGFCC. The
simulated values of the cell voltage (the outputs of the ANN
model) were obtained through the ANN model, based on the
three input variables, namely current density, concentration
and flow rate of the methanol solution. Each data point from
the simulation inFig. 5 represents an output from the ANN
model, corresponding to a certain set of the input variables
described above. We see that the results from the ANN model
are in good agreement with the experimental ones. However,
there are large errors between simulated and experimental
values at the high cell voltage (i.e. close to the open-circuit
voltage). The same observations were made in our tests with

the D sults.
Fig. 6. Comparison of ANN simulation to experimental data from
 MFC by CGFCC: (cubes) experimental data; (spheres) simulated re
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Table 1
Data table forFig. 6

Temperature (K) Current density
(mA cm−2)

Experimental
data (V)

Simulated
results (V)

303 2.928 0.4103 0.3972
318 5.295 0.4127 0.4102
318 7.662 0.3468 0.3529
303 4.599 0.3468 0.3416
333 7.649 0.4151 0.4123
303 3.599 0.3858 0.3718
348 5.38 0.486 0.4823
333 1.549 0.5348 0.5349
348 0.1952 0.6422 0.6175
348 0.9394 0.5812 0.5888
303 4.648 0.3419 0.3403
318 7.71 0.3443 0.3517
333 10.88 0.3492 0.3503
348 14.82 0.3028 0.3297
318 3.172 0.4689 0.4594
348 11.32 0.3761 0.3798
348 3.489 0.5201 0.5223
318 0.3172 0.5861 0.6137
303 1.525 0.4713 0.4885
318 7.552 0.3516 0.3555
318 0.3782 0.5788 0.6067

other data sets. The main reason for this disparity could be that
there were not sufficient experimental data points tracking the
rapidly decreasing cell voltage in this activation polarization
region, and thus the ANN model did not have sufficient in-
formation to make good predictions for data points in that
region. Possible ways to solve this problem are:

1. Making more measurements in the activation polarization
region during the experimental phase.

2. Approximating the values on the performance curve, and
adding the values to the data set, when additional experi-
ments are difficult to be conducted.

With experimental data from a DMFC, an ANN model was
trained. The results generated by the model were then com-

Table 2
Errors in the tests

Data set used MSE (10−3)

Fig. 6 0.074
Fig. 7 0.24
Fig. 8 0.083
Fig. 9

BP 1.50
BP with momentum term 1.00
RBF 1.40

Fig. 10 0.13
Fig. 14

Analytical model 3.03
ANN 0.48
Multiplicative 0.45
Additive 0.34

pared to the experimental data. Since only two input variables
were used (temperature and current density) in this model,
the results can be visualized in a three-dimensional space, as
shown inFig. 6. The cubes in the plot represent experimen-
tal results, and the spheres represent simulated results from
ANN model. Again, we see that the simulated results show
good agreement with experimental results. The comparison
of experimental and simulated results is shown more clearly
in Table 1. Fig. 7 displays the simulated polarization and
power density curves for the PEM fuel cell operated under 1
and 2 atm (333 K).

Fig. 8 demonstrates the performance comparison of dif-
ferent ANN approaches. We conclude that the results from
BP with momentum term match the experimental results bet-
ter than those from the other approaches. The errors from all
the approaches tested are listed inTable 2. We see that the
performance of the RBF approach is also fairly good. In other
tests and by comparisons with other data sets, it is found that
the performance of BP with momentum term is superior over
other approaches. Therefore, if not specifically mentioned, it
is assumed that the BP with momentum term is employed in
the other ANN models in this paper.

tal dat
Fig. 7. Comparison of simulated results and experimen
 a of a PEM fuel cell by CGFCC (operating temperature: 333 K).
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Fig. 8. Comparison of different ANN approaches.

Fig. 9 shows the ANN prediction of the performance of
a hydrogen-feed PEM fuel cell with different Pt loadings.
Four input variables including current density, temperature,
Pt/C of the catalyst and catalyst loading are considered. The
simulated results by ANN model nicely agree with the exper-
imental data. Therefore, the ANN model can be very helpful
when the effect of Pt loading is needed for further analysis of
a fuel cell system.Fig. 10displays the simulated polarization
curves for PEM fuel cells with four different Pt loadings. We
observe fromFig. 10that for a PEM fuel cell operated under
308 K and with Pt/C of 0.2, better cell performance can be
obtained with increasing Pt loading from 0.05 to 0.3. This
conclusion is consistent with the experimental results by Qi
and Kaufman[23]. We expect that ANN models to be equally
good for the prediction of the effects of other factors (such
as relative humidity) in the PEM fuel cell systems.

To set up the hybrid models, the original analytical model
(fixed at 363 K)[14] was validated against experimental data
[21] as shown inFig. 11. The results simulated by this model
agree with the results given in Kulikovsky[14]. Fig. 12shows
the comparison of experimental data and results from the

model we have modified to account for the temperature ef-
fect on cell performance. We see that the modified model
can provide fairly good predictions for the cell voltages un-
der various operating temperatures.Figs. 13 and 14com-
pare the performance of hybrid models, with the pure ANN
model and the pure analytical model. The performances of
both hybrid models are much better than that of the analytical
model. This is due to the limitation of many currently avail-
able physical models. Specifically, to fit experimental data, a
certain number of parameters of a physical model have to be
adjusted beforehand. After validation, those parameters are
fixed. Therefore, when new operating conditions are applied,
the physical model usually cannot offer quantitatively good
predictions without another round of parameter adjustment.
The multiplicative model shows slightly better predictions
than the ANN model. On the other hand, there is a great
improvement in accuracy in the additive model (in terms of
MSE comparisons listed inTable 2). The reason for the per-
formance improvement in the hybrid model is that by design,
the ANN component only tackles the theoretically unknown
parts, while the other parts are already addressed by the phys-

he Pt lo
Fig. 9. ANN modeling of t
 ading effect on cell voltage.
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Fig. 10. Simulated performance curve for the PEM fuel cell with various Pt loadings (temperature: 308 K, Pt/C: 0.2).

Fig. 11. Model validation for DMFC operated at 363 K.

Fig. 12. Model validation for DMFC operating at different temperatures (CMeOH: 0.25 M).
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Fig. 13. Comparison of multiplicative hybrid model to ANN model, analytical model and experimental data.

Fig. 14. Comparison of additive hybrid model to ANN model, analytical model and experimental data.

ical component. However, in a pure ANN model, the various
scales of the fuel cell system have to be handled by a single
ANN model. This means that to achieve equivalent accuracy
with hybrid models, the pure ANN model needs to be trained
with significantly more data points. In our case, the experi-
mental data are sufficient to train an ANN model with good
accuracy in the prediction of cell voltage. In the cases when
a well-trained ANN model cannot be obtained because of in-
adequate experimental data, we expect greater improvement
in the performance by the hybrid model over the ANN model.

5. Conclusions

The ANN approach was employed in the modeling of PEM
fuel cells, and has shown good performance in the prediction
of cell voltages. Specifically, we have been able to model
the effect of Pt loading on cell voltage. The time required
for training an ANN is not much different from the time
needed to set up a physical model. However, the trained ANN
model is computationally fast and easy to use, and therefore

suitable for multi-dimensional mapping applications in fuel
cell systems, especially in the cases where physical models
are not readily available. Among various methods of ANN,
we have tested two widely used approaches, namely BP feed-
forward network and RBF network. Both of them were able
to offer good approximations on cell voltages.

Hybrid models that combine a physical model with an
ANN model were constructed. The motivation is that accura-
cies in the physical model can be compensated by the ANN
model, which has good accuracy in multi-dimensional map-
ping. In our tests, both additive and multiplicative hybrid
models showed much better performance than the analytical
model alone, especially the additive hybrid model. The hybrid
model also demonstrated modest improvement in accuracy,
compared to the pure ANN.
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Appendix A. Analytical model for the hybrid model

The model used for the analytical component of the hybrid
model is a one-dimensional analytical model developed by
Kulikovsky [14]. It was validated against experimental data
[21] of a liquid-feed DMFC operated at 363.15 K. The model
was extended to include the temperature dependence by the
method used in[10] and described earlier in this paper.

The simplified fitting equations for the calculation of cell
voltage are summarized here, and the procedures and meth-
ods to derive these equations can be found in[14]. The overall
cell voltage is written as

Vcell = ηoc − ηa − ηc − ηohmic (A.1)

The ohmic overpotential is calculated by

ηohmic = j0lm

σm
(A.2)

Anode and cathode overpotentials are described by

ηa = ηa,0

[
φ

(
j0

ja

)
ln

(
j0

ja

)
− ln ka − γa ln

(
1 − j0

ja,lim

)

η

H

φ

η

j

k

η

j

k

β

jw = F
Da,dlWH2O

la,dl
(A.13)

ja,lim = 6F
Da,dlCa

la,dl
(A.14)

rcross= ja,lim

jc,lim

(
β + nd(j0/jw)

1 + β + nd(j0/jw)

)(
1 − j0

jw

)
(A.15)

jc,lim = 4F
Dc,dlCc

lc,dl
(A.16)
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