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Abstract

The goal of this paper is to discuss a neural network modeling approach for developing a quantitatively good model for proton exchange
membrane (PEM) fuel cells. Various ANN approaches have been tested; the back-propagation feed-forward networks and radial basis function
networks show satisfactory performance with regard to cell voltage prediction. The effects of Pt loading on the performance of the PEM fuel
cell have been specifically studied. The results show that the ANN model is capable of simulating these effects for which there are currently
no valid fundamental models available from the open literature.

Two novel hybrid neural network models (multiplicative and additive), each consisting of an ANN component and a physical component,
have been developed and compared with the full-blown ANN model. The results from the hybrid models demonstrate comparable performance
(in terms of cell voltage predictions) compared to the ANN model. Additionally, the hybrid models show performance gains over the physical
model alone. The additive hybrid model shows better accuracy than that of the multiplicative hybrid model in our tests.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction cal models are not accurate enough. Besides, physical models
may not be available to describe input—output relations of in-
A fuel cell is a device that can directly convert chemical terest, e.g., the effect of Ptloading, humidity, and other design
energy to electric and thermal energy. Among various types or operating parameters on fuel cell performance.
of fuel cells, proton exchange membrane (PEM) fuel cells A well-designed artificial neural network (ANN) model
(also called polymer electrolyte membrane fuel cells) have provides useful and reasonably accurate input—output re-
attracted a significant amount of research interest in the pastiations because of its excellent multi-dimensional map-
decade, especially in stationary and mobile power generatorsping capability. Artificial neural networks are computational
and electric vehicles. There are primarily two types of PEM paradigms made up of massively interconnected adaptive
fuel cells, namely the hydrogen PEM fuel cell and the direct processing units, known ageurons They have been exten-
methanol fuel cell (DMFC), both of which are efficient and sively employed in various areas of science and technology,
clean replacements for conventional electricity generators. such as pattern recognition, signal processing and process
Mathematical models are important tools for the design control in engineeringl6].
and optimization of fuel cells. In addition to the advances In this paper, we will examine the application of ANN
in PEM fuel cell design, many physical models have been approaches to the modeling of PEM fuel cells. Brief intro-
developed to examine the complicated transport and electro-ductions to ANN, BP feed-forward, the RBF network and
chemical phenomena in hydrogen-feed PEM fuel d&HS)] the formulation of the hybrid model will be given first. Next,
and DMFCg[10-15] Unfortunately, several of these physi- construction of ANN and hybrid models will be described.
The hybrid models employ an analytical model suitably mod-
msponding author. Tel.: +1 860 486 4600 fax: +1 860 486 2950, ified to address the temperature effect. Finally, the results and

E-mail addressshaoduan@engr.uconn.edu (S. Ou). conclusions will be discussed.
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Nomenclature

slope parameter of sigmoid function

bias for a layer of ANN

diffusion coefficient of species(cn? s~1)
reference diffusion coefficient of species
(cmés1)

error function

Faraday’s constant (96 488 C&Y)

radial basis function

exchange current density (A crf)
reference exchange current density (Ach
number of electrons transferred in the reactic
bias of hidden neurons

pressure

square of distance

universal gas constant (8.3143 J mbK 1)
target for supervised training

selected centers for RBF network
temperature (K)

reference temperature (K)

weight of linkj

input signal

input vector

input from link]j

output of a neuron

output of thekth neuron

output of hybrid neural model

Yadditive additive hybrid model

YANN
Ymuttiplicative Multiplicative hybrid model

artificial neural network model

output signal from théth hidden layer to the
kth neuron

Greek symbols

momentum term for Back-propagation trainin
learning rate

open-circuit voltage (V)

reference open-circuit voltage (V)

activation function

proton conductivity @~ cm1)

reference proton conductivitgX " cm~1)

2. Method formulation

2.1. Overview of ANN

ANN is a powerful data modeling tool that can be used to
capture complex input/output relationships. There are many
kinds of ANN models that have been developed for vari-

like feedback networks, feed-forward networks do not con-
tain any cycle in the connections between any two units. The
learning of ANN can be supervised (learning with a teacher)
or unsupervised (learning without a teact&)]. For super-
vised training, every input vector is associated with a target
output vector that supervises the training process. For unsu-
pervised training, the ANN model is not trained toward any
specific target outputs; instead the ANN learns to recognize
patterns in the input data.

The ANN has some significant featufdg] including:

(1) nonlinearity,

(2) adaptivity,

(3) high parallelism,

(4) fault tolerance,

(5) uniformity of analysis and design and

(6) ability to tackle imprecise and fuzzy information.

These features make ANN a good tool for information
processing.

In our study of ANN modeling for PEM fuel cells, we
will focus on feed-forward neural networks with supervised
training. A schematic diagram of a feed-forward artificial
neural network is shown iRig. 1 This network consists of
an input layer, a hidden layer and an output layer. The output
from a neuron in the hidden or output layer can be described
by the following equation:

N
y=¢ ijxj+b 1)
=1

where the input signal; is multiplied by a weight. The bias

b is then added to the weighted sum, and finally the output
signal of the neuron is obtained by applying an activation
function ¢(v) to the result. The most widely used activation
function is the sigmoid function, a common form of which is
defined by

1
vO)= 116w )
wherea is the slope parameter. Given a network with one
hidden layer, the input signal for the neuron in the hidden
layer comes directly from the value of input variaplélow-
ever, for a neuron in the output layer, the input signas the
output from thgth neuron in the hidden layer. Considering a
feed-forward network as shownlig. 1, the model equation
for the entire neural network can be expressed as follows:

K
Yk =¢ (Z whizi + bz)

i=1

K N
=9 Zw,?i(p Zw?jxj—i-bl + b (3)
i=1 =1

ous applications. Based on the topology, the connection in wherez is the output signal from thigh hidden neuron and
an ANN can be feed-forward or feedback (recurrent). Un- y; the output signal from thkth output neuron. The ANN in
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Input layer Hidden layer Output layer

b] bZ
Fig. 1. The feed-forward multi-layer neural network with a single hidden layer.

Fig. Lonly contains one hidden layer. However, it is possible 2.3. Radial basis function network
to have more than one hidden layer, as determined by the
complexity of the problem. In our case studies, ANN models A radial basis function (RBF) network is a feed-forward
with one hidden layer were adequate for accurate prediction network with a hidden layer thatemploys a nonlinear transfor-
of output variables. The number of neurons in the input and mation from the input space to the hidden space. The hidden
output layers are related to the number of independent andunits implement a set of radial basis functions that constitute
dependent variables, respectively. The number of neurons inan arbitrary basis for the input vectors. Due to their excellent
the hidden layer is related to the complexity of the problem. function approximation capabilitigd9], RBF networks are
It is often obtained by trial and error during training. often used for complex mapping. The model equation for an
RBF network can be expressed as follows:

2.2. Back-propagation feed-forward network <

The back-propagation algorithm for training of ANNs was () =¢ Z wiih(X =11, pj) + b Q)
popularized by Rumelhart et al. in 19888]. The learning =1
(training) process adjusts the unknown network parametersThe structure of an RBF network is shown fiig. 2 The
(weights, bias, etc.) in order to minimize the least mean squarehidden layer in RBF network is represented by a radial basis

error function defined as follows: functioni(j% — 7,1, p;), wherei; is the center that has to be
1N M ) selected a priori ang; the bias for a given hidden neuron.
E(w) == Z Z (ol - v)) (4) The Gaussian function, as shown in E8), is widely used
24 as the basis function for RBF networks:
j=1k=1 .
wherek refers to an output neurop,is an index over the  h(q, p;) = e Pid (8)

learning datay; the output of the network ang the corre-
sponding target value. The weight adjustments are conducte
by back-propagating the errors to the network. To accomplish
this, the weight is adjusted by an amount proportional to the
gradient of error with respect to the weight, shown as follows:

Juhereq = |3 — 112

Unlike a BP network that can have one or more hidden lay-
ers, an RBF network has only one hidden layer.déléarule
which is commonly used in back-propagation feed-forward
networks, is also used to update the weights of RBF networks

oE i ining.
Aw=—n (w) (5) during training
ow
wherey is the learning-rate parameter affi(w)/ow the 2.4. Hybrid model development

local gradient of£(w) in Eq.(4). The BP algorithm performs _
better with a second-order term referred to as the momentum__" order to more accurately predict the performance of a
terma, which introduces the old weight change as a parameter PEM fueél cell in the case when physical models of limited

for the computation of the new weight change. accuracy are avai!able, we propose a hybrid model that con-
sists of an analytical component and an ANN component.
Awtl =y (w) L aAw (6) The rationale behind this approach is to combine the part of

ow the model that is well known from the physics of the problem,
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b,

Fig. 2. Radial basis function network.

with the part that is poorly known but can be estimated quite The analytical model used in the hybrid model is a one-

effectively using neural networks.

The schematic of a multiplicative hybrid model is
shown in Fig. 3 The cell voltage or other desired
outputs can be described by a multiplicative model
Ymultiplicative(X1, X2, - . ., Xy), which has an analytical com-
ponent and an ANN component as follows:

Y = Ymultiplicative(xL X2y vy xN)

9)

The vectorx = [x1, xo, ..., xy] represents operating or de-
sign variables. The functioffanaiytica(*1, x2, ..., xn) is an
analytical (physical) model that takes as inputhe function
Yann(x1, x2, ..., xy) is an artificial neural network model
that takes as input and approximates the unmodeled parts
in the physical model. Finally, the net predictidhis the
product of the predictions frodunaiytica(x1, X2, . . ., xx) @and
Yann(x1, x2, ..., xy). Similarly, an additive model can be
constructed as

= Yanalytica(xl, x2, ..., XxN)Yann(x1, x2, ..., xN)

Y = Yadditivelx1, X2, . ..)

= YanaiyticaX1, X2, . ..) + Yann(x1, X2, .. ) (10)

X —m m—— Analytical model

Y.»Irmlyti(ul (X5 X550 y)

X

X ———

Other outputs
—
ANN model if needed

XN—— Yoo (X505 5.xy)

Multiplicative hybrid model

Ymullipllmm-c (xl > xZ Lol 'xN )

Fig. 3. The schematic of multiplicative hybrid model.

dimensional model based on the model developed by Ku-
likovsky [14]. This original model was validated against the
experimental data of a DMFC at a fixed operating temperature
of 363 K. Using the method described[it0], we extended

the capability of the original model to predict cell voltages
under different operating temperatures. This is accomplished
by approximating the temperature dependence of the material
properties as summarized below.

2.5. Proton conductivity

o =dc"Texp {1268(1 - ;)} (11)

ref

This relationshifd5] was used to correct the proton conduc-
tivity of Nafion for different temperatures, and was assumed
valid for anode and cathode catalyst layers as well as the
membrane.

2.6. Diffusion coefficients

The diffusion coefficients for the species in anode, cath-
ode and MEA are assumed to have similar temperature de-
pendence as the followirg]:

1 1
D; = D'®"exp |2436( — — = 12
= offfexp 2436~ 7] (12)
2.7. Dependence of bn temperature
Anode:
1 1
. .ref
= exp (8420 — — = 13
10,an = 1Q an p|: (Tref T>:| (13)
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Cathodd20]: Each data set was separated into three parts, namely train-
ing data, test data and validation data. The training data was
N 11 i i i
i0,cat= lff.f:ateXp {8804( . )} (14) used to train the neural network to obtain the yve|ghts for the
Tret T network. The test data were used to determine when train-

ing should be stopped. Finally, the validation data were em-
2.8. Open-circuit voltage ployed to assess the performance of a trained neural network.
Initially, the validation data are chosen depending on the de-

Open-circuitvoltage was corrected for the thermodynamic Sired number and form of outputs. The remaining data are
effects of temperature and pressure by the following relation- Separated into training and test data at a ratio of 3:1.
ship:

OE RT [P
Noc = N + AT () — AN 1In <2

oT nF Py

3.2. Constructing ANN
) (15)

For BP feed-forward networks, a three-layer network

where QE/dT) is the gradient of electric potential over tem-  (With one hidden layer) was found to be adequate for train-
perature. Liquid methanol solution was used as the anode feednd: The architecture of the RBF network was the same as that
in this study. For this systemE/dT) = —0.14 mVK-tand of the three-layer feed-forward network. Generally speaking,
AN = —0.5. All the reference parameters (at a reference NPut and output variables can be any process variables that

temperature of 363 K) can be obtained frfid]. are measurable (s_uch as c_eI_I voltage, cell curr_ent density, cell
temperature, relative humidity of air, etc.) during the opera-

tion of a fuel cell system. In our studies, input variables in-

cluded cell temperature, concentration of methanol solution,
methanol flow rate, current density, Pt loading and the ratio
of the amount of Pt to carbon. The output variable chosen
was the cell voltage.

Three data sets were assembled from experimental da’taII TthetpaolcT:QUri tg create a mUIt'pt“TZt'\{[e hybrid mogtel_ls
in the open literatur@21-23] In addition, experimental data ![hus. raet mth'. ) droT e>t(per|trn$nFa a}[r?’ we ctan Ot an
from the Connecticut Global Fuel Cell Center was used to ¢ INPUtVEctorand output vector. From Ihe input vector,

test the ANN models. The cell performance data by Argy- the analytical model can generate the simulated output vec-
' . S . tor Yanaiyticar The ratioY/Yananticawas obtained by dividing
ropoulos et al[21] was obtained from a liquid-feed direct Y yt

methanol fuel cell that was operated with methanol solution thetoutpu(tj ?}’ thetIS|muI£ated cell voltggest.hFl?alllyz th% |rt1pl;t
supplied at a rate of 1.12 dmin~1 with air fed cathodes vector and the ratio vector were used as the training data for

pressurized at 2 bar. The concentrations of methanol solu-:Ee AN'\II TOdlel' Tgelt{alngd ANNd'rrF)deI Wfas ctomtblneld ;\;'th
tion vary from 0.25 to 0.75 M. Cell operating temperatures € analytical mo@el 1o give predictions of output varables,

vary from 303 to 363 K. Cell performance data by Gurau and f[:r?rres;p(;r;gmg t_o a g;\éendifet of w;gut;anaples.f Therefore,
Smotkin[22] is for a DMFC operated at temperatures be- ¢ 310/ Yanalytical OF tN€ GITErENCEr — Yanalytical O EXper-

tween 313 and 353 K. Different concentrations of methanol imental cell voltages to those simulated by analytical model
solution (0.5, 1 and 2 M) and different MeOH solution flow were used as target outputs for the hybrid model. The addi-

rates (0.15, 0.5 and 5 ml miA) were used for each of their t!ve hybrid model can be similarly constructed as abov_e. 1_'he
tests. final results were expressed as cell voltages by multiplying

Data from Qi and Kaufmaf23] were used to show the or adding the analytical pa¥nanyticarto the output obtained

ability of the ANN model to simulate the effect of Pt loading from the ANN model.
on cell performance. Pt loading (mgcA) is defined as the

amount of Pt catalyst per area of the MEA. The tests were Analytical
conducted on a hydrogen-feed PEM fuel cell under the cell model Y e
temperature of 308 K. The hydrogen humidification temper-
ature and air humidification temperature were 318K. The
stoichiometries of air and hydrogen were approximately 10 _
at a current density of 2.0 Acmi. Two experimental data X Y/sat"’
sets from CGFCC were used to train and test ANN mod- analytical
els. The first data set is the performance data for a liquid-
feed DMFC operated at four different temperatures (303,
318, 333 and 348K). The second data set examines the
effects of operating temperature (313-353K) and pressure

(0.54-2.5 atm) on cell performance of a hydrogen-feed PEM
fuel cell. Fig. 4. Constructing the multiplicative hybrid model.

3. Development of ANN models and hybrid models

3.1. Preparation of data sets

ANN model
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Fig. 5. Comparison of simulated cell voltages and experimental data for a PEM fuel cell.

The number of hidden neurons in the hidden layer can are then compared to the experimental ones in the validated
vary, and will affect the quality of the ANN. Therefore, an data set to assess the performance of the ANN model.
optimal number of hidden neurons need to be determined for
each neural network to achieve the best performance. This
was done by trial and error. ) )

4. Results and discussion

3.3. Training, testing and validating ANN Fig. 5 shows the comparison of simulated cell voltages
from ANN model to experimental results. We employed the
Training of an ANN model is the process of adjusting data set from a hydrogen-feed PEM fuel cell at CGFCC. The
the weights of links among the neurons. The weights are simulated values of the cell voltage (the outputs of the ANN
updated after processing each example (incremental training)model) were obtained through the ANN model, based on the
or after processing the whole training data set (batch training). three input variables, namely current density, concentration
During training, the error function is reduced as the number of and flow rate of the methanol solution. Each data point from
training epoch increases. Testing data set is used to determin¢he simulation inFig. 5 represents an output from the ANN
when to stop training process by monitoring the error of the model, corresponding to a certain set of the input variables
test data. The error from the test data is usually less thandescribed above. We see that the results from the ANN model
that from the training data. If the two error quantities become are in good agreement with the experimental ones. However,
equal, we need to stop the training to make sure the network isthere are large errors between simulated and experimental
not over-trained. Once the ANN is trained, the model is ready values at the high cell voltage (i.e. close to the open-circuit
to give predictions of output variables. The simulated outputs voltage). The same observations were made in our tests with

0.719

0.6 1

Cell voltage (V) |

04 1

w3411

. N = 15 350
Current density (mA/cm?*) Temperature (K)

Fig. 6. Comparison of ANN simulation to experimental data from the DMFC by CGFCC: (cubes) experimental data; (spheres) simulated results.
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Table 1 Table 2
Data table forFig. 6 Errors in the tests
Temperature (K) Current density Experimental  Simulated Data set used MSE (18)
—2

(mAcm™9) data (V) results (V) Fig. 6 0.074
303 2928 0.4103 0.3972 Fig. 7 0.24
318 5295 0.4127 0.4102 Fig. 8 0.083
318 7662 0.3468 0.3529 Fig. 9
303 4599 0.3468 0.3416 BP 1.50
333 7649 0.4151 0.4123 BP with momentum term 1.00
303 3599 0.3858 0.3718 RBF 1.40
348 538 0.486 0.4823 Fig. 10 0.13
333 1549 0.5348 0.5349 Fig. 14
348 01952 0.6422 0.6175 Analytical model 3.03
348 09394 0.5812 0.5888 ANN 0.48
303 4648 0.3419 0.3403 Multiplicative 0.45
318 771 0.3443 0.3517 Additive 0.34
333 1088 0.3492 0.3503
348 1482 0.3028 0.3297 _ ) . )
318 3172 0.4689 0.4594 pared to the experimental data. Since only two input variables
348 1132 0.3761 0.3798 were used (temperature and current density) in this model,
g‘l‘g 3‘3‘51332 g-gggi g-gig the results can be visualized in a three-dimensional space, as
203 1595 0.4713 0.4885 shown inFig. 6. The cubes in the plot represent experimen-
318 7552 0.3516 0.3555 tal results, and the spheres represent simulated results from
318 Q3782 0.5788 0.6067 ANN model. Again, we see that the simulated results show

good agreement with experimental results. The comparison
of experimental and simulated results is shown more clearly

other data sets. The main reason for this disparity could be that, Taple 1 Fig. 7 displays the simulated polarization and

there were not sufficient experimental data points tracking the power density curves for the PEM fuel cell operated under 1
rapidly decreasing cell voltage in this activation polarization 5,4 2 atm (333K).

region, and thus the ANN model did not have sufficient in-
formation to make good predictions for data points in that
region. Possible ways to solve this problem are:

1. Making more measurements in the activation polarization
region during the experimental phase. i ;

2. Approximating the values on the performance curve, and performance of the RBF approach is also fairly good. In other
adding the values to the data set, when additional experi_tests and by comparisons with other data sets, it is found that

ments are difficult to be conducted.

Fig. 8 demonstrates the performance comparison of dif-
ferent ANN approaches. We conclude that the results from
BP with momentum term match the experimental results bet-
ter than those from the other approaches. The errors from all
the approaches tested are listediable 2 We see that the

the performance of BP with momentum term is superior over
other approaches. Therefore, if not specifically mentioned, it

With experimental datafroma DMFC, an ANN modelwas is assumed that the BP with momentum term is employed in
trained. The results generated by the model were then com-the other ANN models in this paper.

= [ ] Experimental data (1 atm)
>4 Simulated results (1 atm)
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Fig. 7. Comparison of simulated results and experimental data of a PEM fuel cell by CGFCC (operating temperature: 333 K).
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Fig. 8. Comparison of different ANN approaches.

Fig. 9 shows the ANN prediction of the performance of
a hydrogen-feed PEM fuel cell with different Pt loadings.
Four input variables including current density, temperature,

model we have modified to account for the temperature ef-
fect on cell performance. We see that the modified model
can provide fairly good predictions for the cell voltages un-

Pt/C of the catalyst and catalyst loading are considered. Theder various operating temperaturésgs. 13 and 14&om-

simulated results by ANN model nicely agree with the exper-
imental data. Therefore, the ANN model can be very helpful

pare the performance of hybrid models, with the pure ANN
model and the pure analytical model. The performances of

when the effect of Pt loading is needed for further analysis of both hybrid models are much better than that of the analytical

afuel cell systen-ig. 10displays the simulated polarization
curves for PEM fuel cells with four different Pt loadings. We
observe frontig. 10that for a PEM fuel cell operated under
308 K and with Pt/C of 0.2, better cell performance can be
obtained with increasing Pt loading from 0.05 to 0.3. This
conclusion is consistent with the experimental results by Qi
and Kaufmarj23]. We expect that ANN models to be equally
good for the prediction of the effects of other factors (such
as relative humidity) in the PEM fuel cell systems.

To set up the hybrid models, the original analytical model
(fixed at 363 K)[14] was validated against experimental data
[21] as shown irFig. 11 The results simulated by this model
agree with the results given in KulikovsiA4]. Fig. 12shows

model. This is due to the limitation of many currently avail-
able physical models. Specifically, to fit experimental data, a
certain number of parameters of a physical model have to be
adjusted beforehand. After validation, those parameters are
fixed. Therefore, when new operating conditions are applied,
the physical model usually cannot offer quantitatively good
predictions without another round of parameter adjustment.
The multiplicative model shows slightly better predictions
than the ANN model. On the other hand, there is a great
improvement in accuracy in the additive model (in terms of
MSE comparisons listed ifable 2. The reason for the per-
formance improvement in the hybrid model is that by design,
the ANN component only tackles the theoretically unknown

the comparison of experimental data and results from the parts, while the other parts are already addressed by the phys-
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I U U ORI S —
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B 3 ;NN
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[ 1 | |
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= | n
g
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1T ) o . R S S NS .
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Fig. 9. ANN modeling of the Pt loading effect on cell voltage.
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Fig. 10. Simulated performance curve for the PEM fuel cell with various Pt loadings (temperature: 308 K, Pt/C: 0.2).
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ical component. However, in a pure ANN model, the various suitable for multi-dimensional mapping applications in fuel
scales of the fuel cell system have to be handled by a singlecell systems, especially in the cases where physical models
ANN model. This means that to achieve equivalent accuracy are not readily available. Among various methods of ANN,
with hybrid models, the pure ANN model needs to be trained we have tested two widely used approaches, namely BP feed-
with significantly more data points. In our case, the experi- forward network and RBF network. Both of them were able
mental data are sufficient to train an ANN model with good to offer good approximations on cell voltages.

accuracy in the prediction of cell voltage. In the cases when  Hybrid models that combine a physical model with an

a well-trained ANN model cannot be obtained because of in- ANN model were constructed. The motivation is that accura-
adequate experimental data, we expect greater improvementies in the physical model can be compensated by the ANN
in the performance by the hybrid model over the ANN model. model, which has good accuracy in multi-dimensional map-
ping. In our tests, both additive and multiplicative hybrid
models showed much better performance than the analytical
model alone, especially the additive hybrid model. The hybrid
model also demonstrated modest improvement in accuracy,

The ANN approach was employed in the modeling of PEM compared to the pure ANN.
fuel cells, and has shown good performance in the prediction
of cell voltages. Specifically, we have been able to model
the effect of Pt loading on cell voltage. The time required Acknowledgements
for training an ANN is not much different from the time
needed to set up a physical model. However, the trained ANN  The authors would like to acknowledge the Connecticut
model is computationally fast and easy to use, and thereforeGlobal Fuel Cell Center for providing financial support, and

5. Conclusions
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Dr. Raymond England and Hui Xu for providing experimen-
tal data.

Appendix A. Analytical model for the hybrid model

The model used for the analytical component of the hybrid

_ Jalim
model is a one-dimensional analytical model developed by 'cr0ss= j (

Kulikovsky [14]. It was validated against experimental data
[21] of a liquid-feed DMFC operated at 363.15 K. The model

was extended to include the temperature dependence by thec.im

method used ifil0] and described earlier in this paper.
The simplified fitting equations for the calculation of cell
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DaaW,
ju = F2A 720 (A.13)
la,dl
DaaiC
Jalim = 6F 2422 (A.14)
la,dl
clim \ 1+ B+ nda(jo/jw) Jw
D
_ gp DeaCe (A.16)

le,di

voltage are summarized here, and the procedures and methreferences

ods to derive these equations can be fourj@4h. The overall
cell voltage is written as

Veell = oc — Mla — Nc — Nohmic (A-l)
The ohmic overpotential is calculated by
Jo!
Nohmic = *— (A.2)
m

Anode and cathode overpotentials are described by

Na = Na0 {(b (jo) In <J0> —Ink®—»%In (1— .JO )
Ja Ja Jalim

+%21n (1+ B +nd],0>} (A.3)
Jw
e = 1c,0 [cb (JO) In (JO) —Ink°
Jc Je
—y°In <1 - - rcross)} (A.4)
Je,lim
Here
X
=1 A5
#) =1+ )
RT
= A.6
Na,0 Wz ( )
. 20aclMa0
ja= S5 (A7)
acl
ke = la?'ia< Ca >Va (A8)
Ja Caref
RT
= A.9
Nc,0 acF ( )
. 2Uc,clflc,o
Je= T (A.10)
c.cl
o = fecte(Ee ) (A11)
Jc Co ref
Dl
— —mad (A.12)
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